Class LMOptimiser
-
- All Implemented Interfaces:
Serializable
,Descriptive
,Reflexive
public class LMOptimiser extends GradientBasedOptimiser
Given an objective function equal to the sum of squared residuals, iteratively approaches the minimum of this function by applying the Levenberg-Marquardt formulas.- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static int
MAX_FAILED_ATTEMPTS
Up to 5 failed attempts are allowed.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description boolean
compatibleWith(OptimiserStatistic os)
The Levenberg-Marquardt optimiser will only accept ordinary least-squares as its objective function.NumericProperty
getDampingRatio()
static LMOptimiser
getInstance()
This class uses a singleton pattern, meaning there is only instance of this class.GradientGuidedPath
initState(GeneralTask t)
Creates a newPath
suitable for thisPathSolver
boolean
iteration(GeneralTask task)
This method sets out the basic algorithm for estimating the minimum of the target function, which is defined as the sum of squared residuals (SSR), or the deviations of the model solution (aDifferenceScheme
used to solve theProblem
for thistask
) from the empirical values (theExperimentalData
).RectangularMatrix
jacobian(GeneralTask task)
Calculates the Jacobian of the model function given as a discrete set of time-signal values.Set<NumericPropertyKeyword>
listedKeywords()
The types of the listed parameters for this class include:GRADIENT_RESOLUTION, ERROR_TOLERANCE, ITERATION_LIMIT
.void
prepare(GeneralTask task)
Calculates the Jacobian, if needed, evaluates the gradient and the Hessian matrix.void
set(NumericPropertyKeyword type, NumericProperty property)
The accepted types are:GRADIENT_RESOLUTION, ERROR_TOLERANCE, ITERATION_LIMIT
.void
setDampingRatio(NumericProperty dampingRatio)
String
toString()
-
Methods inherited from class pulse.search.direction.GradientBasedOptimiser
dx, getGradientResolution, getGradientStep, gradient, reset, setGradientResolution
-
Methods inherited from class pulse.search.direction.PathOptimiser
genericProperties, getErrorTolerance, getMaxIterations, getSolver, ignoreSiblings, setErrorTolerance, setInstance, setMaxIterations, setSolver, update
-
Methods inherited from class pulse.util.PropertyHolder
addListener, areDetailsHidden, data, describe, firePropertyChanged, getDescriptor, getListeners, getPrefix, initListeners, isListedNumericType, isListedParameter, listedTypes, numericData, parameterListChanged, removeListeners, setPrefix, updateProperties, updateProperty
-
Methods inherited from class pulse.util.Accessible
accessibleChildren, genericProperty, numericProperties, numericProperty, property, update
-
Methods inherited from class pulse.util.UpwardsNavigable
addHierarchyListener, getHierarchyListeners, getParent, identify, removeHierarchyListener, removeHierarchyListeners, setParent, specificAncestor, tellParent
-
-
-
-
Field Detail
-
MAX_FAILED_ATTEMPTS
public static final int MAX_FAILED_ATTEMPTS
Up to 5 failed attempts are allowed.- See Also:
- Constant Field Values
-
-
Method Detail
-
iteration
public boolean iteration(GeneralTask task) throws SolverException
Description copied from class:PathOptimiser
This method sets out the basic algorithm for estimating the minimum of the target function, which is defined as the sum of squared residuals (SSR), or the deviations of the model solution (a
DifferenceScheme
used to solve theProblem
for thistask
) from the empirical values (theExperimentalData
). The algorithm will go through the following steps: (1) find the direction, which points to the minimum, using the concretedirection
method; (2) estimate the magnitude of the step to reach the minimum using theLinearSolver
; (3) assign a new set of parameters to theSearchTask
; (4) calculate the new SSR value.- Specified by:
iteration
in classPathOptimiser
- Parameters:
task
- aSearchTask
that needs to be driven to a minimum of SSR.- Returns:
- the SSR value with the newly found parameters.
- Throws:
SolverException
- See Also:
direction(Path)
,LinearOptimiser
-
prepare
public void prepare(GeneralTask task) throws SolverException
Calculates the Jacobian, if needed, evaluates the gradient and the Hessian matrix.- Specified by:
prepare
in classPathOptimiser
- Parameters:
task
- theSearchTask
undergoing optimisation- Throws:
SolverException
-
jacobian
public RectangularMatrix jacobian(GeneralTask task) throws SolverException
Calculates the Jacobian of the model function given as a discrete set of time-signal values. The elements of the Jacobian are calculated using central differences from two residual vectors evaluated by shifting the search vector slightly to the right or left of each search parameter.
This is also equivalent to calculating the difference of the model values when performing the shift, when taking the model values at the time points of the reference dataset. Because of a different discretisation of the model, it is easier to substitute these with the residuals, which had already been interpolated at the reference time values.
- Parameters:
task
- the task being optimised- Returns:
- the jacobian matrix
- Throws:
SolverException
-
initState
public GradientGuidedPath initState(GeneralTask t)
Description copied from class:PathOptimiser
Creates a newPath
suitable for thisPathSolver
- Specified by:
initState
in classPathOptimiser
- Parameters:
t
- the task, the optimisation path of which will be tracked- Returns:
- a
Path
instance
-
listedKeywords
public Set<NumericPropertyKeyword> listedKeywords()
Description copied from class:GradientBasedOptimiser
The types of the listed parameters for this class include:
GRADIENT_RESOLUTION, ERROR_TOLERANCE, ITERATION_LIMIT
. Also, all the flags in this class are treated as separate listed parameters.- Overrides:
listedKeywords
in classGradientBasedOptimiser
- Returns:
- a set of
NumericPropertyKeyword
instances, which have been explicitly marked as a listed parameter for thisPropertyHolder
. - See Also:
NumericPropertyKeyword
-
getInstance
public static LMOptimiser getInstance()
This class uses a singleton pattern, meaning there is only instance of this class.- Returns:
- the single (static) instance of this class
-
toString
public String toString()
- Overrides:
toString
in classPathOptimiser
-
compatibleWith
public boolean compatibleWith(OptimiserStatistic os)
The Levenberg-Marquardt optimiser will only accept ordinary least-squares as its objective function. Therefore,os
should be an instance ofSumOfSquares
.- Overrides:
compatibleWith
in classPathOptimiser
- Parameters:
os
- a selected optimiser metric- Returns:
true
if returnsSumOfSquares.class
,false
otherwise
-
getDampingRatio
public NumericProperty getDampingRatio()
-
set
public void set(NumericPropertyKeyword type, NumericProperty property)
Description copied from class:GradientBasedOptimiser
The accepted types are:GRADIENT_RESOLUTION, ERROR_TOLERANCE, ITERATION_LIMIT
.- Overrides:
set
in classGradientBasedOptimiser
- Parameters:
type
- the type, which must be equal by definition toproperty.getType()
.property
- the property, which contains new information.
-
setDampingRatio
public void setDampingRatio(NumericProperty dampingRatio)
-
-