Class GradientBasedOptimiser

    • Constructor Detail

      • GradientBasedOptimiser

        protected GradientBasedOptimiser()
        Abstract constructor that sets up the default ITERATION_LIMIT, ERROR_TOLERANCE and GRADIENT_RESOLUTION for this PathSolver. In addition, sets up a list of search flags defined by the Flag.defaultList method.
    • Method Detail

      • reset

        public void reset()
        Resets the default ITERATION_LIMIT, ERROR_TOLERANCE and GRADIENT_RESOLUTION values for this PathSolver. In addition, sets up a list of search flags defined by the Flag.defaultList method.
        Overrides:
        reset in class PathOptimiser
      • gradient

        public Vector gradient​(GeneralTask task)
                        throws SolverException
        Calculates the Vector gradient of the target function (the sum of squared residuals, SSR, for this task.

        If Δf(Δxi) is the change in the target function associated with the change of the parameter xi, the i-th component of the gradient is equal to gi = (Δf(Δxi)/Δxi). The accuracy of this calculation depends on the Δxi value, which is roughly the GRADIENT_RESOLUTION. Note however that instead of using a forward-difference scheme to calculate the gradient, this method utilises the central-difference calculation of the gradient, which significantly increases the overall accuracy of calculation. This means that to evaluate each component of this vector, the Problem associated with this task is solved twice (for xi ± Δxi).

        Parameters:
        task - a SearchTask that is being driven to the minimum of SSR
        Returns:
        the gradient of the target function
        Throws:
        SolverException
      • dx

        protected double dx​(NumericProperty defProp,
                            double value)
        Calculates the gradient step. Ensures dx is not zero even if the parameter values is. Applicable to discrete properties.
        Parameters:
        defProp - the default property
        value - the value of the parameter under the optimisation vector
        Returns:
        the gradient step
      • setGradientResolution

        public void setGradientResolution​(NumericProperty resolution)
      • listedKeywords

        public Set<NumericPropertyKeyword> listedKeywords()

        The types of the listed parameters for this class include: GRADIENT_RESOLUTION, ERROR_TOLERANCE, ITERATION_LIMIT. Also, all the flags in this class are treated as separate listed parameters.

        Overrides:
        listedKeywords in class PathOptimiser
        Returns:
        a set of NumericPropertyKeyword instances, which have been explicitly marked as a listed parameter for this PropertyHolder.
        See Also:
        NumericPropertyKeyword
      • set

        public void set​(NumericPropertyKeyword type,
                        NumericProperty property)
        The accepted types are: GRADIENT_RESOLUTION, ERROR_TOLERANCE, ITERATION_LIMIT.
        Overrides:
        set in class PathOptimiser
        Parameters:
        type - the type, which must be equal by definition to property.getType().
        property - the property, which contains new information.
      • getGradientStep

        public double getGradientStep()