Class PathOptimiser
- java.lang.Object
-
- pulse.util.UpwardsNavigable
-
- pulse.util.Group
-
- pulse.util.Accessible
-
- pulse.util.PropertyHolder
-
- pulse.search.direction.PathOptimiser
-
- All Implemented Interfaces:
Serializable
,Descriptive
,Reflexive
- Direct Known Subclasses:
GradientBasedOptimiser
,ParticleSwarmOptimiser
public abstract class PathOptimiser extends PropertyHolder implements Reflexive
An abstract class that defines the mathematical basis of solving the reverse heat conduction problem.Defines the method for calculating the gradient of the target function (the sum of squared residuals, SSR) and a search iteration method, which is used in the main loop of the
SearchTask
'srun
method. Declares (but not defines!) the methods for finding the direction of the minimum. This class is closely linked with another abstract search class, theLinearSolver
.- See Also:
LinearOptimiser
, Serialized Form
-
-
Constructor Summary
Constructors Modifier Constructor Description protected
PathOptimiser()
Abstract constructor that sets up the defaultITERATION_LIMIT, ERROR_TOLERANCE
andGRADIENT_RESOLUTION
for thisPathSolver
.
-
Method Summary
All Methods Static Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description boolean
compatibleWith(OptimiserStatistic os)
Checks if this optimiser is compatible with the statistic passed to the method as its argument.By default, this will accept anyOptimiserStatistic
List<Property>
genericProperties()
This method has been overriden to account for each individual flag in theList<Flag>
set out by this class.NumericProperty
getErrorTolerance()
static PathOptimiser
getInstance()
NumericProperty
getMaxIterations()
protected DirectionSolver
getSolver()
boolean
ignoreSiblings()
ShouldAccessible
s that belong to thisPropertyHolder
be ignored when thisPropertyHolder
is displayed in a table?abstract IterativeState
initState(GeneralTask t)
Creates a newPath
suitable for thisPathSolver
abstract boolean
iteration(GeneralTask task)
This method sets out the basic algorithm for estimating the minimum of the target function, which is defined as the sum of squared residuals (SSR), or the deviations of the model solution (aDifferenceScheme
used to solve theProblem
for thistask
) from the empirical values (theExperimentalData
).Set<NumericPropertyKeyword>
listedKeywords()
The types of the listed parameters for this class include:ERROR_TOLERANCE, ITERATION_LIMIT
.abstract void
prepare(GeneralTask task)
Defines a set of procedures to be run at the end of the search iteration.void
reset()
Resets the defaultITERATION_LIMIT, ERROR_TOLERANCE
andGRADIENT_RESOLUTION
values for thisPathSolver
.void
set(NumericPropertyKeyword type, NumericProperty property)
The accepted types are:ERROR_TOLERANCE, ITERATION_LIMIT
.void
setErrorTolerance(NumericProperty errorTolerance)
static void
setInstance(PathOptimiser selectedPathOptimiser)
void
setMaxIterations(NumericProperty maxIterations)
protected void
setSolver(DirectionSolver solver)
String
toString()
void
update(Property property)
Finds aFlag
equivalent toflag
in theoriginalList
and substitutes its value withflag.getValue
.-
Methods inherited from class pulse.util.PropertyHolder
addListener, areDetailsHidden, data, describe, firePropertyChanged, getDescriptor, getListeners, getPrefix, initListeners, isListedNumericType, isListedParameter, listedTypes, numericData, parameterListChanged, removeListeners, setPrefix, updateProperties, updateProperty
-
Methods inherited from class pulse.util.Accessible
accessibleChildren, genericProperty, numericProperties, numericProperty, property, update
-
Methods inherited from class pulse.util.UpwardsNavigable
addHierarchyListener, getHierarchyListeners, getParent, identify, removeHierarchyListener, removeHierarchyListeners, setParent, specificAncestor, tellParent
-
-
-
-
Method Detail
-
reset
public void reset()
Resets the defaultITERATION_LIMIT, ERROR_TOLERANCE
andGRADIENT_RESOLUTION
values for thisPathSolver
. In addition, sets up a list of search flags defined by theFlag.defaultList
method.
-
iteration
public abstract boolean iteration(GeneralTask task) throws SolverException
This method sets out the basic algorithm for estimating the minimum of the target function, which is defined as the sum of squared residuals (SSR), or the deviations of the model solution (a
DifferenceScheme
used to solve theProblem
for thistask
) from the empirical values (theExperimentalData
). The algorithm will go through the following steps: (1) find the direction, which points to the minimum, using the concretedirection
method; (2) estimate the magnitude of the step to reach the minimum using theLinearSolver
; (3) assign a new set of parameters to theSearchTask
; (4) calculate the new SSR value.- Parameters:
task
- aSearchTask
that needs to be driven to a minimum of SSR.- Returns:
- the SSR value with the newly found parameters.
- Throws:
SolverException
- See Also:
direction(Path)
,LinearOptimiser
-
prepare
public abstract void prepare(GeneralTask task) throws SolverException
Defines a set of procedures to be run at the end of the search iteration.- Parameters:
task
- theSearchTask
undergoing optimisation- Throws:
SolverException
-
getErrorTolerance
public NumericProperty getErrorTolerance()
-
setErrorTolerance
public void setErrorTolerance(NumericProperty errorTolerance)
-
getMaxIterations
public NumericProperty getMaxIterations()
-
setMaxIterations
public void setMaxIterations(NumericProperty maxIterations)
-
genericProperties
public List<Property> genericProperties()
This method has been overriden to account for each individual flag in theList<Flag>
set out by this class.- Overrides:
genericProperties
in classAccessible
- Returns:
- This will return a
List<Property>
containing all properties belonging to thisAccessible
, which are not assignable from theNumericProperty
class.
-
listedKeywords
public Set<NumericPropertyKeyword> listedKeywords()
The types of the listed parameters for this class include:
ERROR_TOLERANCE, ITERATION_LIMIT
. Also, all the flags in this class are treated as separate listed parameters.- Overrides:
listedKeywords
in classPropertyHolder
- Returns:
- a set of
NumericPropertyKeyword
instances, which have been explicitly marked as a listed parameter for thisPropertyHolder
. - See Also:
NumericPropertyKeyword
-
set
public void set(NumericPropertyKeyword type, NumericProperty property)
The accepted types are:ERROR_TOLERANCE, ITERATION_LIMIT
.- Specified by:
set
in classAccessible
- Parameters:
type
- the type, which must be equal by definition toproperty.getType()
.property
- the property, which contains new information.
-
ignoreSiblings
public boolean ignoreSiblings()
Description copied from class:PropertyHolder
ShouldAccessible
s that belong to thisPropertyHolder
be ignored when thisPropertyHolder
is displayed in a table?- Overrides:
ignoreSiblings
in classPropertyHolder
- Returns:
false
forPathSolver
- See Also:
PropertyHolderTable
-
update
public void update(Property property)
Finds aFlag
equivalent toflag
in theoriginalList
and substitutes its value withflag.getValue
.- Overrides:
update
in classAccessible
- Parameters:
property
- theProperty
, which will update a similar property of thisAccessible
.
-
getInstance
public static PathOptimiser getInstance()
-
setInstance
public static void setInstance(PathOptimiser selectedPathOptimiser)
-
getSolver
protected final DirectionSolver getSolver()
-
setSolver
protected final void setSolver(DirectionSolver solver)
-
compatibleWith
public boolean compatibleWith(OptimiserStatistic os)
Checks if this optimiser is compatible with the statistic passed to the method as its argument.By default, this will accept anyOptimiserStatistic
- Parameters:
os
- a selected optimiser metric- Returns:
true
, if not specified otherwise by its subclass implementation.
-
initState
public abstract IterativeState initState(GeneralTask t)
Creates a newPath
suitable for thisPathSolver
- Parameters:
t
- the task, the optimisation path of which will be tracked- Returns:
- a
Path
instance
-
-