Package pulse.search.linear
Class WolfeOptimiser
- java.lang.Object
-
- pulse.util.UpwardsNavigable
-
- pulse.util.Group
-
- pulse.util.Accessible
-
- pulse.util.PropertyHolder
-
- pulse.search.linear.LinearOptimiser
-
- pulse.search.linear.WolfeOptimiser
-
- All Implemented Interfaces:
Serializable
,Descriptive
,Reflexive
public class WolfeOptimiser extends LinearOptimiser
This is the implementation of the strong Wolfe conditions for performing inexact linear search. This type of linear search works best with the
ApproximatedHessianSolver
.- See Also:
BFGSOptimiser
, Wikipedia page, Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static double
C1
The constant used in the Armijo inequality, equal to 0.05.static double
C2
The constant used in the strong Wolfe inequality for the modulus of the gradient projection, equal to 0.8.-
Fields inherited from class pulse.search.linear.LinearOptimiser
searchResolution
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static WolfeOptimiser
getInstance()
This class uses a singleton pattern, meaning there is only instance of this class.double
linearStep(GeneralTask task)
This uses a combination of the Wolfe conditions for conducting an inexact line search with the domain partitioning using a random number generator.String
toString()
-
Methods inherited from class pulse.search.linear.LinearOptimiser
domain, getLinearResolution, listedKeywords, set, setLinearResolution
-
Methods inherited from class pulse.util.PropertyHolder
addListener, areDetailsHidden, data, describe, firePropertyChanged, getDescriptor, getListeners, getPrefix, ignoreSiblings, initListeners, isListedNumericType, isListedParameter, listedTypes, numericData, parameterListChanged, removeListeners, setPrefix, updateProperties, updateProperty
-
Methods inherited from class pulse.util.Accessible
accessibleChildren, genericProperties, genericProperty, numericProperties, numericProperty, property, update, update
-
Methods inherited from class pulse.util.UpwardsNavigable
addHierarchyListener, getHierarchyListeners, getParent, identify, removeHierarchyListener, removeHierarchyListeners, setParent, specificAncestor, tellParent
-
-
-
-
Field Detail
-
C1
public static final double C1
The constant used in the Armijo inequality, equal to 0.05.- See Also:
- Constant Field Values
-
C2
public static final double C2
The constant used in the strong Wolfe inequality for the modulus of the gradient projection, equal to 0.8.- See Also:
- Constant Field Values
-
-
Method Detail
-
linearStep
public double linearStep(GeneralTask task) throws SolverException
This uses a combination of the Wolfe conditions for conducting an inexact line search with the domain partitioning using a random number generator. The partitioning is done in such a way that: (a) whenever the Armijo inequality is not satisfied, the original domain
[a; b]
is reduced to- Specified by:
linearStep
in classLinearOptimiser
- Parameters:
task
- the target function is the sum of squared residuals (SSR) for thistask
- Returns:
- a double, representing the step magnitude that needs to be
multiplied by the direction of the search determined previously using the
PathSolver
to arrive at the next set of parameters corresponding to a lower SSR value of thistask
- Throws:
SolverException
-
toString
public String toString()
- Overrides:
toString
in classLinearOptimiser
-
getInstance
public static WolfeOptimiser getInstance()
This class uses a singleton pattern, meaning there is only instance of this class.- Returns:
- the single (static) instance of this class
-
-