Package pulse.problem.schemes
Class TridiagonalMatrixAlgorithm
- java.lang.Object
-
- pulse.problem.schemes.TridiagonalMatrixAlgorithm
-
- All Implemented Interfaces:
Serializable
- Direct Known Subclasses:
BlockMatrixAlgorithm
public class TridiagonalMatrixAlgorithm extends Object implements Serializable
Implements the tridiagonal matrix algorithm (Thomas algorithms) for solving systems of linear equations. Applicable to such systems where the forming matrix has a tridiagonal form: Ai*xi-1 - Bi xi + Ci xi+1 = -Fi.- See Also:
- Serialized Form
-
-
Constructor Summary
Constructors Constructor Description TridiagonalMatrixAlgorithm(Grid grid)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
beta(double f, double phi, int i)
void
evaluateAlpha()
Calculates thealpha
coefficients as part of the tridiagonal matrix algorithm.void
evaluateBeta(double[] U)
void
evaluateBeta(double[] U, int start, int endExclusive)
Calculates thebeta
coefficients as part of the tridiagonal matrix algorithm.double[]
getAlpha()
double[]
getBeta()
protected double
getCoefA()
protected double
getCoefB()
protected double
getCoefC()
int
getGridPoints()
double
getGridStep()
double
getTimeStep()
double
phi(int i)
void
setAlpha(int i, double alpha)
void
setBeta(int i, double beta)
void
setCoefA(double a)
void
setCoefB(double b)
void
setCoefC(double c)
void
sweep(double[] V)
Calculates the solutionV
using the tridiagonal matrix algorithm.
-
-
-
Constructor Detail
-
TridiagonalMatrixAlgorithm
public TridiagonalMatrixAlgorithm(Grid grid)
-
-
Method Detail
-
sweep
public void sweep(double[] V)
Calculates the solutionV
using the tridiagonal matrix algorithm. This performs a backwards sweep fromN - 1
to0
whereN
is the grid density value. The coefficientsalpha
andbeta
should have been precalculated- Parameters:
V
- the array containing theN
th value previously calculated from the respective boundary condition
-
evaluateAlpha
public void evaluateAlpha()
Calculates thealpha
coefficients as part of the tridiagonal matrix algorithm.
-
evaluateBeta
public void evaluateBeta(double[] U)
-
evaluateBeta
public void evaluateBeta(double[] U, int start, int endExclusive)
Calculates thebeta
coefficients as part of the tridiagonal matrix algorithm.- Parameters:
U
-start
-endExclusive
-
-
beta
public double beta(double f, double phi, int i)
-
phi
public double phi(int i)
-
setAlpha
public void setAlpha(int i, double alpha)
-
setBeta
public void setBeta(int i, double beta)
-
getAlpha
public double[] getAlpha()
-
getBeta
public double[] getBeta()
-
setCoefA
public void setCoefA(double a)
-
setCoefB
public void setCoefB(double b)
-
setCoefC
public void setCoefC(double c)
-
getCoefA
protected double getCoefA()
-
getCoefB
protected double getCoefB()
-
getCoefC
protected double getCoefC()
-
getTimeStep
public final double getTimeStep()
-
getGridPoints
public final int getGridPoints()
-
getGridStep
public final double getGridStep()
-
-