Package pulse.problem.schemes
Class BlockMatrixAlgorithm
- java.lang.Object
-
- pulse.problem.schemes.TridiagonalMatrixAlgorithm
-
- pulse.problem.schemes.BlockMatrixAlgorithm
-
- All Implemented Interfaces:
Serializable
public class BlockMatrixAlgorithm extends TridiagonalMatrixAlgorithm
A modification of the algorithm for solving a system of linear equations, where the first and last equation contains references to the last and first elements of the solution, respectively. The corresponding matrix is composed of an inner tridiagonal block and a border formed by an extra row and column. This block system is solved using the Sherman-Morrison-Woodbury identity and the Thomas algorithm for the main block.- See Also:
- Serialized Form
-
-
Constructor Summary
Constructors Constructor Description BlockMatrixAlgorithm(Grid grid)
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
evaluateBeta(double[] U)
void
evaluateBeta(double[] U, int start, int endExclusive)
Calculates thebeta
coefficients as part of the tridiagonal matrix algorithm.double[]
getGamma()
double[]
getP()
double[]
getQ()
void
setGamma(int i, double g)
void
sweep(double[] V)
Calculates the solutionV
using the tridiagonal matrix algorithm.-
Methods inherited from class pulse.problem.schemes.TridiagonalMatrixAlgorithm
beta, evaluateAlpha, getAlpha, getBeta, getCoefA, getCoefB, getCoefC, getGridPoints, getGridStep, getTimeStep, phi, setAlpha, setBeta, setCoefA, setCoefB, setCoefC
-
-
-
-
Constructor Detail
-
BlockMatrixAlgorithm
public BlockMatrixAlgorithm(Grid grid)
-
-
Method Detail
-
sweep
public void sweep(double[] V)
Description copied from class:TridiagonalMatrixAlgorithm
Calculates the solutionV
using the tridiagonal matrix algorithm. This performs a backwards sweep fromN - 1
to0
whereN
is the grid density value. The coefficientsalpha
andbeta
should have been precalculated- Overrides:
sweep
in classTridiagonalMatrixAlgorithm
- Parameters:
V
- the array containing theN
th value previously calculated from the respective boundary condition
-
evaluateBeta
public void evaluateBeta(double[] U)
- Overrides:
evaluateBeta
in classTridiagonalMatrixAlgorithm
-
evaluateBeta
public void evaluateBeta(double[] U, int start, int endExclusive)
Description copied from class:TridiagonalMatrixAlgorithm
Calculates thebeta
coefficients as part of the tridiagonal matrix algorithm.- Overrides:
evaluateBeta
in classTridiagonalMatrixAlgorithm
-
getP
public double[] getP()
-
getQ
public double[] getQ()
-
setGamma
public void setGamma(int i, double g)
-
getGamma
public double[] getGamma()
-
-