Package pulse.problem.statements
Class AdiabaticSolution
- java.lang.Object
-
- pulse.problem.statements.AdiabaticSolution
-
- All Implemented Interfaces:
Serializable
public class AdiabaticSolution extends Object implements Serializable
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static intDEFAULT_CLASSIC_PRECISIONstatic intDEFAULT_POINTS
-
Method Summary
All Methods Static Methods Concrete Methods Modifier and Type Method Description static HeatingCurveclassicSolution(Problem p)Calculates the classic solution, using the default value of theprecisionand the time limit specified by theHeatingCurveofp.static HeatingCurveclassicSolution(Problem p, double timeLimit)static HeatingCurveclassicSolution(Problem p, double timeLimit, int precision)A static factory method for calculating a heating curve based on the analytical solution of Parker et al.
-
-
-
Field Detail
-
DEFAULT_CLASSIC_PRECISION
public static final int DEFAULT_CLASSIC_PRECISION
- See Also:
- Constant Field Values
-
DEFAULT_POINTS
public static final int DEFAULT_POINTS
- See Also:
- Constant Field Values
-
-
Method Detail
-
classicSolution
public static HeatingCurve classicSolution(Problem p, double timeLimit, int precision)
A static factory method for calculating a heating curve based on the analytical solution of Parker et al.The math itself is done separately in the
Problemclass. This method creates aHeatingCurvewith the number of points equal to that of thep.getHeatingCurve(), and with the same baseline. The solution is calculated for the time range0 <= t <= timeLimit.- Parameters:
p- The problem statement, providing access to theclassicSolutionAtmethod and to theHeatingCurveobject it owns.timeLimit- The upper time limit (in seconds)precision- The second argument passed to theclassicSolutionAt- Returns:
- a
HeatingCurverepresenting the analytical solution. - See Also:
- Parker et al. Journal of Applied Physics 32 (1961) 1679
-
classicSolution
public static HeatingCurve classicSolution(Problem p)
Calculates the classic solution, using the default value of theprecisionand the time limit specified by theHeatingCurveofp.- Parameters:
p- the problem statement- Returns:
- a
HeatinCurve, representing the classic solution. - See Also:
classicSolution(pulse.problem.statements.Problem,double,int)
-
classicSolution
public static HeatingCurve classicSolution(Problem p, double timeLimit)
-
-